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Abstract

Measures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on
advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied
researchers working with data from LSAS may be uncertain about the assumptions and computational details of
these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in
secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to
the key properties of skill assessments, we give an overview over the three principal methods with which
secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates
of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs).
We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for
measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e.,
consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show
that although none of the methods are optimal under all criteria, methods that result in a single point estimate of
each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches
that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We
conclude with practical recommendations for secondary analysts and data-producing organizations.
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Introduction
In the last two decades, large-scale assessments surveys
(LSAS) have expanded considerably in number and
scope. National and international LSAS, such as PISA,
TIMMS, PIAAC, NEPS, or NAEP, now provide a wealth
of data on cognitive and socio-emotional (or “non-cogni-
tive”) skills1 of children, youth, and adults. This

increasing data availability has led to a veritable surge in
investigations in economics, psychology, and sociology
on issues such as skill formation, inequality in skills, or
labor market returns to skills.
As the methodological sophistication of LSAS has

evolved, the gap between expert psychometricians2 who
curate the assessments and applied researchers who use
these data as secondary analysts has widened. LSAS
often apply advanced statistical models and scoring tech-
niques with which few applied researchers are familiar
(e.g., Jacob & Rothstein, 2016; Jerrim, Lopez-Agudo,
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Marcenaro-Gutierrez, & Shure, 2017). Consequently,
there is uncertainty among applied researchers about
the statistical assumptions and computational details
behind these different models and scoring techniques,
their respective pros and cons, and how to best in-
corporate the skill measures that result from them in
secondary analyses. Moreover, secondary analysts
often use the best available methods in less-than-
optimal ways (e.g., Braun & von Davier, 2017). Thus,
there is the risk of a growing disconnect between best
practices in the use of data from LSAS and actual
practices in applied research. Less-than-optimal prac-
tices may result in faulty analyses and erroneous sub-
stantive conclusions.
Against this backdrop, this article is intended as a

primer for applied researchers working with LSAS as
secondary analysts. Our exposition starts with a non-
technical introduction to the key properties of skill
assessment. We then review the three principal op-
tions that applied researchers have at their disposal to
incorporate skill measures from LSAS in their second-
ary analyses: test scores, structural equation modeling
(SEM), and plausible values (PVs). We discuss advan-
tages and disadvantages of the three methods (i.e.,
test scores, SEM, and PVs) based on three criteria:
fallibility (i.e., control for measurement error and un-
biasedness), usability (i.e., ease of use in secondary
analyses), and immutability (i.e., consistency across
different analyses and analysts of test scores, PVs, or
measurement model parameters in SEM). Our aim is
to inform secondary analysts about the advantages
and potential pitfalls of each option in order to help
them make informed choices and understand poten-
tial limitations and biases that may ensue from using
one option. The most important take-away message
will be that using a single ability point estimate per
person—that is, using test scores—is not the most ap-
propriate option for research on skills. We conclude
with practical recommendations.

From testing to test scores: three basic properties
of skill assessment
Many innovations in psychometrics have sprung from
the context of LSAS. To appreciate why increasingly
sophisticated psychometric models are needed, it is
critical to understand the properties of skill assess-
ments and the challenges these entail: (1) the distinc-
tion between latent (unobserved) skill variables and
their manifest (observed) indicators; (2) the concept
of measurement error; and (3) the difference between
measurement/population models and individual ability
point estimates. Below, we briefly introduce these
properties as they relate to LSAS.

Skills are latent variables
The cognitive or socio-emotional skills that LSAS seek
to assess are latent variables. That is, these skills cannot
be directly observed but only inferred from individuals’
responses to a set of test items. This is typically
expressed in path diagrams such as the one shown in
Fig. 1. Here, observed responses on items 1 through K
(i.e., Yk) are used to estimate the latent skill, denoted θ,
an idea first introduced by Spearman (1904) in his true
score model.
Consider the example of literacy skills (i.e., the

ability to understand, evaluate, and utilize written
text; e.g., OECD, 2016). There is no way to directly
measure an individual’s literacy skills as one would
measure their height or body weight. However, liter-
acy can be made accessible to measurement if one
conceived of literacy as a latent variable that mani-
fests in individuals’ ability to solve test items that
were designed such that they require a certain level
of literacy skills to be solved. Test takers’ answers to
test items are observed (“manifest”) variables that re-
flect the unobserved (“latent”) variable of interest, lit-
eracy skills.

Test items and test scores contain measurement error
Because a skill is a latent variable, any test designed to
measure it will only imperfectly capture the individual’s
true ability θi. Individuals’ responses to each test items
will always reflect extraneous influences other than the
skill that the test intends to measure, that is, they will
contain measurement error εi. Possible sources of meas-
urement error include, for example, random influences
such as guessing, accidentally choosing the wrong an-
swer despite knowing the correct one, or external distur-
bances during the testing session. Especially as test
length increases, factors such as fatigue, loss of motiv-
ation, or practice effects, may also tarnish item re-
sponses. Measurement error is indeed an inextricable
property of test items and, hence, of tests scores that, in
their most basic form, are the sum across these test
items (Lord & Novick, 2008). Consequently, any test

score will only yield an estimate of that true ability, θ̂i ,

and that estimate will contain measurement error: θ̂i
¼ θi þ εi:
Hypothetically, one might get closer to the true ability

by administering a very large number of test items, or by
repeatedly testing every individual many times. Akin to
improving the “signal-to-noise ratio,” increasing test
length or testing on multiple occasions can add informa-
tion about θiwhile minimizing the influence of measure-
ment error (i.e., can increase the reliability of the test).
This applies only if the measurement errors of individual
items εik are random and independent of each other and
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the additional items or measurement occasions are valid
indicators of θi (for a brief exposition, see Niemi, Car-
mines, & McIver, 1986).3 In real-world scenarios, how-
ever, resource constraints and concerns about
respondent burden make it impossible to administer a
large number of items, let alone administer them
repeatedly.
Why should applied researchers care about measure-

ment error? The answer is simple: If unaccounted for,
measurement error can bias research findings. As has
long been known (Fuller, 1987; Schofield, 2015; Spear-
man, 1904), classical measurement error (i.e., random
error that is normally distributed and uncorrelated with
the latent variable) acts like noise that blurs the signal.
When error-laden skill measures are used as predictors
in a regression, measurement error can substantially de-
crease the association between the skill and an outcome
compared to its true size, a bias known as “attenuation
bias” or “regression dilution” (Lord & Novick, 2008;
Skrondal & Laake, 2001). A more specific variation of this
problem occurs when researchers seek to control for con-
founders in a regression or to establish the incremental

predictive validity of a skill over other predictors (or vice
versa). Here, measurement error in a skill and/or one of the
covariates can lead to overly optimistic conclusions about in-
cremental validity (i.e., type I error; Westfall & Yarkoni,
2016) and phantom effects (i.e., biased compositional effects)
in multi-level models (Pokropek, 2015; Televantou et al.,
2015). In longitudinal studies, measurement error can reduce
rank-order consistencies (stabilities) of skills. Moreover, al-
though random measurement error does not bias estimates
of population means, it does bias variances and hence also
standard errors (i.e., precision).
In addition to classical measurement error, a variety of

other biases other than attenuation can occur when using

test scores (i.e., ability point estimates θ̂i ). These biases
can lead to both over- and underestimations of regression
coefficients, variances, and related statistics (Hyslop &
Imbens, 2001; Jacob & Rothstein, 2016; Nimon, Zientek,
& Henson, 2012). For example, if measurement error in a
skill is not classical but correlates with the measurement
error or true score of an outcome the skill is meant to pre-
dict, assumptions about the independence of error and
true scores are violated. This may not only attenuate but
also inflate the regression coefficients describing the skill–
outcome relationship (for in-depth discussions, see Fuller,
1987; Hyslop & Imbens, 2001; Nimon et al., 2012; Ste-
fanski, 2000). Moreover, as we will see later, different
methods of computing test scores entail different forms of
biases that can have different, and often hard-to-predict,

Fig. 1 A latent measurement model in CTT notation. The latent ability θ is measured by k test items (manifest indicators Y1 … Yk). The different
loadings λ1…λk and measurement error terms ε1 … εk reflect different degrees to which each item reflects the latent ability. For substantive
analyses and/or for estimating PVs, θ can be predicted by background variables (X1…Xp). The latter model part is often referred to as the
population model (e.g., Mislevy, 1991)

3The relation between test length and test reliability is expressed in the
so-called Spearman–Brown formula, sometimes called “prophecy for-
mula.” This formula allows to predict how the reliability Rel of a test
will change when extending the length l of the test (l = number of
items) by a factor of k. It stipulates that Rel(k × l) = k × Rel / [1 + (k –
1) × Rel].
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consequences (e.g., some “shrinkage” estimators pull indi-
viduals’ ability estimates towards the population mean,
making extreme scores less extreme).

Measurement models and individual ability estimates are
not the same
The goal of LSAS is not to provide ability estimates for
individuals. Instead, their goal is to provide estimates of
population quantities such as means and variances of
the skill distribution or associations between skills and
their predictors and/or outcomes. Compared to tests
that are meant to inform decisions about individual test
takers (e.g., college admission or employee recruitment
tests), the tests in LSAS comprise far fewer items. Add-
itionally, LSAS often use complex booklet designs in
which each individual works only on a small subset of
items: Test items from a large item pool are assigned to
blocks, which are arranged in test booklets. After an-
swering a set of common questions from the back-
ground questionnaire, each respondent works only on a
randomly assigned booklet, that is, only on some of the
item blocks (e.g., Braun & von Davier, 2017). Such
“planned missingness” or “incomplete block” designs re-
duce respondent burden and cut costs for the data-
producing organization (see Graham, Taylor, Olchowski,
& Cumsille, 2006, for a general introduction).
Analyzing data from skill assessments, and especially

from skill assessments employing complex test designs,
requires specialized statistical models. These statistical
models comprise a measurement model (or “latent vari-
able model”) linking individual responses to test items
with the latent skill construct θiand oftentimes also a
population model stipulating the distribution of the la-
tent skill (mostly the normal distribution) and its rela-
tions to the background variables from the background
questionnaire (see Mislevy, 1991, pp. 180–181). Cru-
cially, such models are primarily designed for estimating
population parameters of tests (e.g., item difficulties or
reliability) and the resulting skill distribution in the
population—but not necessarily for providing individual
ability estimates (i.e., test scores).
To better understand this point, let us briefly—and

with some omission and simplification—review the
psychometric theories that underlie skill assessments
in LSAS: classical test theory (CTT) and item re-
sponse theory (IRT), also known as probabilistic test
theory (Lord & Novick, 2008; see Steyer, 2015, for an
overview). Both theories provide measurement models
that express the relation between a latent variable
(e.g., a skill) and its indicators (e.g., test items) in dif-
ferent but closely related ways (Glöckner-Rist & Hoij-
tink, 2003; Raykov & Marcoulides, 2016). Most
modern cognitive skill assessments in which test
items have a binary or categorial response format

(e.g., correct–incorrect) are based on IRT models.
IRT is arguably better able to handle incomplete
block designs, population models with background
variables, and computer adaptive testing (e.g., Bauer
& von Davier, 2017). CTT continues to be widely
used and has an important place in scale construc-
tion, especially (but not exclusively) in the assessment
of socio-emotional skills using polytomous (rating
scale) formats. Many LSAS employ both CTT and
IRT, albeit in different stages of the analysis. Without
going into detail, both theories assume that responses
to test items reflect the person’s true ability—but only
imperfectly and often to different degrees. The funda-
mental equations of these theories map the latent
true ability to the observed answers to test items
while highlighting that these manifest items are only
imperfect (i.e., unreliable) indicators of the latent
quantity. As we saw in Fig. 1, in CTT, a person’s re-
sponse to an assessment item (or subtest) Yik is mod-
eled as a function of their true ability θi (often scaled
by a factor loading λk that indicates how strongly the
item reflects the θi) and a measurement error εik that
is orthogonal to true ability:4

Y ik ¼ λk � θi þ εik ð1Þ

Measurement error in CTT is defined as the difference
between the observed response and the true ability, εik =
Yik − θi. The main goal of CTT is to garner information
about tests (not test takers). Of particular interest is a
test’s reliability in a sample, defined as the proportion of
variance in the test that is due to variance in the true
scores, Rel(Y) = Var(θ)/Var(Y).
In IRT, each respondent’s probability of answering an

item correctly is modeled as a function of the latent abil-
ity θi, the difficulty of the item bk, and often scaled by an
item discrimination parameter ak. For example, a model
for a binary test item where wrong answers are coded 0
and correct answers coded 1 can be estimated as:

P Y ik ¼ 1ð Þ ¼ exp ak � θi - bkð Þð Þ= 1þ exp ak � θi - bkð Þð Þ½ � ð2Þ

Unlike in CTT, measurement error does not appear as
a parameter in the IRT equation. Instead, it is implicit in
the probabilistic (i.e., non-deterministic) relationship be-
tween the latent ability variable and its manifest indica-
tors. Note that in IRT the term “measurement error” is

often used to denote the standard error SEðθ̂iÞ of a re-

4CTT notation traditionally uses ττiinstead of θiand uses the term
“true score” instead of “true ability.” Also note that the true score
refers to the true score of a single test item or item parcel (indexed k ,
hence ττik) and is not necessarily identical to the latent ability θi(this is
only true for the model of parallel tests; e.g., Steyer, 2015). We use
θθiinstead of ττifor simplicity and consistency across IRT and CTT.
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spondent’s test score, or more generally of the ability
point estimate.
It may surprise readers to learn that CTT models

can operate on an input matrix that solely contains
the sample variances and covariances but not individ-
ual responses to test items. Many IRT models do op-
erate on individual responses, yet the estimation of
item parameters (the ak and bk) occurs prior to, and
independent of, any estimation of person parameters
(i.e., ability estimates).5 Computing test scores thus
involves a transition from a CTT or IRT measure-
ment model for the population to a single point esti-

mate θ̂i for an individual’s unknown true ability θi.
This step, called “ability estimation,” is critical: Only a
latent measurement model of a skill, but not a pre-
diction of an individual’s test score, is able to separate
true ability from measurement error (e.g., McDonald,
2011). Moreover, some test scores such as unit-
weighted sum scores ignore possible differences in
item difficulties and discriminations in the measure-
ment model (McNeish & Wolf, 2020; von Davier,
Gonzalez, & Mislevy, 2009). Fortunately, as we will
see, some approaches circumvent computing individ-
ual point estimates and the biases that can result.

Overview of the three main methods for using
skill measures from LSAS
We now review the three principal methods that second-
ary analysts can use to incorporate skill measures from
LSAS in their analysis: as test scores, through structural
equation modeling (SEM), and in the form of plausible
values (PVs). Table 1 provides an overview of the three
methods.
After a general description of each method, we there-

fore evaluate it based on three criteria:6 (1) fallibility, (2)
usability, and (3) immutability. Fallibility describes
whether the method accounts for measurement error;
that is, whether it separates true ability from measure-
ment error. Associations between fallible measures and
predictors or outcomes of interest are subject to attenu-
ation bias (i.e., lower than they truly are) and other
forms of bias. Fallibility is the most important touch-
stone for comparing the methods, as it is most import-
ant for the unbiasedness of research results. Usability
denotes the ease of use for secondary analysts in terms
of the required statistical and data-analytical expertise.
Usability is an important consideration because even
methods that are less biased but too complex to imple-
ment tend to be less popular with secondary analysts
and are generally prone to being used erroneously. Fi-
nally, immutability indicates whether (a) the individual
ability point estimates (test scores), (b) PVs, or (c) pa-
rameters (e.g, the loadings λk) of a latent measurement
model in SEM remain the same (i.e., unchanged) across
different analysis setups (i.e., variables included in the

6These criteria correspond only loosely to statistical concepts. We use
them as umbrella terms to summarize important information about
the four methods.

Table 1 Evaluation of the three main methods of using skill measures from LSAS

Method Variants and
Examples

Fallibility Usability Immutability

Test scores ▪ Sum scores
(weighted,
unweighted)
▪ CTT factor
scores
(Thurstone,
Bartlett, EAP)
▪ IRT ability
estimates (WLE,
MLE, EAP, MAP)

▪ ME not (fully) controlled (–)
▪ Biased standard errors of the
latent variable in regressions (–)
▪ Biased variance estimates
(e.g., underestimation for EAP,
overestimation for WLE) (–)
▪ Factor score indeterminacy
(–)

▪ Sum scores: Very easy to compute (+)
▪ CTT and IRT test scores, if user-generated:
Computation requires knowledge of
psychometric models but is fairly easy (+)
▪ Very easy to use in analysis (+)

Sum scores:
▪ Immutable across sub-samples, ana-
lyses, and analysts (+)
CTT Factor scores/ IRT ability
estimates:
▪ Immutable if estimates are included
with LSAS data (+)
▪ Not immutable if estimates are user
generated (–)

Structural
equation
modeling
(SEM)

▪ Regular SEM
▪ IRT–SEM
▪ MESE

▪ ME controlled (+)
▪ Unbiased estimates of
correlations, means, etc. of the
latent variable (+)
▪ Measurement model sensitive
to model (mis-)specification (–)

▪ Requires specialized statistical software (–)
▪ Requires additional psychometric
expertise (–)

▪ Immutable if measurement model
parameters are fixed (+)
▪ Not immutable with free
measurement model parameters
across sub-samples, analyses, and an-
alysts (–)

Plausible
Values (PV)

▪ ME controlled (+)
▪ Approximately unbiased
estimates of correlations,
means, etc. of the latent
variable (+)

▪ User-generated PVs require statistical and
programming and expertise (–)
▪ Using PVs in secondary analysis requires
basic knowledge of multiple imputation
methodology (–)

▪ Immutable if PVs are included with
LSAS data (+)
▪ Not immutable if PVs are user
generated (–)

Fallibility indicates whether the method accounts for measurement error and is unbiased. Usability denotes the ease of use in secondary analyses. Immutability is
the property of test scores, PVs, or measurement model parameters not to change (i.e., remain the same) across different analysis setups and analysts
ME measurement error. See “Abbreviations” for all other abbreviations
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analysis, subsamples used, statistical models and estima-
tors employed) or not. If test scores, PVs, or parameters
of the latent measurement models are not immutable,
this may also lead to different statistical inferences about
a parameter of interest (e.g., the relation of a skill to a
predictor or outcome) and ultimately to different sub-
stantive conclusions. It is, of course, highly undesirable if
different analysts arrive at different conclusions and pol-
icy implications merely because of variations in how they
analyze the same data. Immutability is, thus, closely re-
lated to the replicability of research findings, for which it
is an important prerequisite.
Regarding these criteria, it is important to distin-

guish between two scenarios. In the first scenario,
secondary analysts re-use test scores (or PVs) that
were computed by the data-producing agency and in-
cluded in the data dissemination. This is the most
common scenario and limits what can be done to
remedy the issues with test scores that we will raise.
In the second scenario, secondary analysts estimate
their own custom set of test scores, SEM, or PVs.
This increases flexibility on the side of analysts but
requires specialized psychometric expertise. Even
more fundamentally, it requires access to the item-
level data (i.e., the data need to include variables that
store information about test-takers’ responses to indi-
vidual test items), which is not always the case with
LSAS.
For simplicity, we assume that the IRT or CTT

measurement model for the skill in question is cor-
rectly specified. Further, we assume that there is no
differential item functioning (DIF) or measurement
non-invariance across subpopulations (i.e., the test
functions alike in different subgroups). We also do
not consider complications introduced by missing
data that stems from respondents not reaching or re-
fusing to answer some test items. Finally, we will not
deal with issues such as scaling, scale anchoring, link-
ing, or test score interpretation. These issues are far
from trivial but are beyond the scope of our present
paper. Fortunately, in modern LSAS, most of these is-
sues are taken care of by the test developers and data
producers at earlier stages. Thus, secondary analysts
need not be overly concerned with them, although it
is good practice to critically examine whether as-
sumptions such as measurement invariance/differen-
tial item functioning have been tested and are met.
We will refer the reader to specialized treatments of
these issues in the following.

Test scores
Definition and description
As explained in the previous section, test scores are

point estimates of an individual’s ability θ̂i . They are the
scores that would be reported back to test takers, for ex-
ample in an admission or placement test, and used for
diagnostic decisions. There are many different types of
test scores that range from simple sum scores to more
complex Bayesian techniques. All these techniques share
the aim of maximizing validity by producing test scores
that are as highly correlated with the underlying true
ability as possible. Some of them are well suited for the
purpose of individual diagnostics—however, all types of
test scores share some fundamental limitations that
make them less-than-optimal choices for secondary ana-
lysts of LSAS who are interested in population quantities
(e.g., means or variances of skills, group differences in
skills, or relations of the skill to instructional quality or
other predictors). Below we briefly describe the most
widely used types of test scores (all of which will typic-
ally correlate highly for a given assessment, but not all of
which can be computed when complex assessment de-
signs such as the aforementioned incomplete block de-
signs are used).

Sum scores Sum scores are the simplest type of test
score. They are what the term “test scores” traditionally
referred to (Lord, 1980). Their abiding popularity stems
from the fact that they are easy to compute and inter-
pret. However, as we will see, this simplicity can be de-
ceptive as it masks the shortcomings of sum scores.
These shortcomings explain why sum scores are no lon-
ger widely used in LSAS. Beauducel and Leue (2013),
McNeish and Wolf (2020), and von Davier (2010) pro-
vide excellent discussions of the limitations of sum
scores.
Assuming we have three indicators (i.e., Yik with k = 1,

2, 3) to measure a skill, the sum score for person i is
computed as

Unweighted Sum Scorei ¼ Y i1 þ Y i2 þ Y i3 ð3Þ

Instead of the sum, one can also take the mean across
items. Most commonly, sum or mean scores are un-
weighted (or unit-weighted) such that all items contrib-
ute equally to the resulting scale score. This is only valid
if all test items reflect the target skill in equal measure
and with the same amount of measurement error. These
rather restrictive assumptions are foundational to the
model of “parallel test” in CTT (see Steyer, 2015, for an
introduction) and the one-parameter logistic model (1PL
or “Rasch” model) in IRT (Andersen, 1977). In both
models, all test items have the same factor loadings and
error variance or item discriminations, respectively. This

6These criteria correspond only loosely to statistical concepts. We use
them as umbrella terms to summarize important information about
the four methods.
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assumption does not always hold in skill assessments,
such that congeneric CTT models or (at least) two-
parameter logistic IRT models (2PL or “Birnbaum”; An-
dersen, 1977; Birnbaum, 2008) are needed. According to
these models, items can have different loadings or dis-
criminations, which implies that they are not inter-
changeable and reflect the latent skill to varying degrees.
In this case, unweighted sum scores are inappropriate
because unit-weights do not align with the measurement
model (Beauducel & Leue, 2013; McNeish & Wolf,
2020).
Researchers sometimes hope to remedy the problems

of the sum scores by using weighted scores:

Weighted Sum Scorei ¼ λ1 � Y i1 þ λ2 � Y i2 þ λ3
� Y i3 ð4Þ

The weights are typically taken from the loadings (λk)
or item discriminations of the CTT or IRT model or
from another dimension reduction technique such as
principal component analysis (Joliffe & Morgan, 1992).
Sum scores are based exclusively on the available an-

swers of respondents to test items. They cannot readily
handle missing data (e.g., Mazza, Enders, & Ruehlman,
2015; see also Enders, 2010). This also implies that sum
scores are ill-suited for complex test designs in LSAS
(von Davier, 2010). These complex test designs involve
planned missingness designs in which individuals answer
different subsets of items. They also utilize Information
from background questionnaire in order to improve the

precision and efficiency with which θ̂i can be estimated.
Items from the background questionnaire can also serve
as “screening items” that govern which subset of items a
respondent receives in booklet designs or computerized
adaptive testing (CAT) designs. The skill data resulting
from such designs cannot be readily summarized by a
simple sum score.

CTT factor scores Factor scores are test scores based
on factor-analytic CTT measurement models such as
EFA and CFA. They are often used for computing test
scores from socio-emotional (or “non-cognitive”) skill
assessments that use rating scale format. Factor score es-
timation methods account for both the factor loadings
(i.e., the λk in Eq. 1 and Fig. 1) and the residual error
variance information contained in the measurement
model. There are several methods to compute factor
scores, including the regression method, Bartlett’s re-
gression method, and expected a posteriori (EAP) esti-
mator method (Beauducel, 2005; Devlieger, Mayer, &
Rosseel, 2016; Fava & Velicer, 1992; Grice & Harris,
1998). For unidimensional measurement models, these
methods result in different, albeit highly correlated, fac-
tor scores that are equally viable (Beauducel, 2007). One

issue, especially for multi-dimensional measurement
models (e.g., models with more than one factor) is factor
score indeterminacy (Grice, 2001). Factor score indeter-
minacy means that an infinite number of factor scores
can be computed from the same factor solution and all
will be equally consistent with the model that produced
the factor loadings. The higher the factor score indeter-
minacy, the higher the differences in the factor scores
from different estimation methods. Factor score indeter-
minacy is lower when there are a large number of items
and the items have strong factor loadings. To obtain
consistent estimates of regression coefficients and their
standard errors, Skrondal and Laake (2001) recom-
mended using the Regression method to compute factor
scores when the factor (e.g., a skill) is used as a predictor
variable and Bartlett’s method when it is used as an out-
come variable in the subsequent regression analyses.

IRT ability estimates In modern LSAS, test scores are
often computed from IRT models such as the 2PL, 3PL,
or partial credit model (PCM). The two most widely
used ability estimates from IRT models are likelihood-
based methods such Warm’s (1989) weighted likelihood
estimate (WLE) and, once again, Bayesian methods such
as the expected a posteriori (EAP) estimate. Whereas
WLE depends only on the response pattern and the pa-
rameters of the measurement model, the EAP addition-
ally depends on the prior distribution of θ. The EAP
estimate is the mean of the posterior distribution of θ,
which combines information about response patterns
and model parameters with a prior distribution. Thus,
unlike the WLE, EAP estimates can be computed with a
prior distribution containing information from a back-
ground questionnaire (Laukaityte & Wiberg, 2017).
Bayesian approaches such as EAP are inherently biased
as they are shrinkage estimators, that is, the estimator
pulls all test scores towards the mean of the prior distri-
bution, thereby reducing their variance and making ex-
treme scores less extreme. This bias is small when the
prior distribution is appropriate and the reliability of the
test is high (Tong & Kolen, 2010) but can be larger for
test comprising only few items or when using incom-
plete block designs (e.g., Braun & von Davier, 2017).
WLE and EAP estimates are widely used and tend to
perform the best among other IRT-based ability esti-
mates in terms of standard error of the regression coeffi-
cients in subsequent analyses.

Fallibility
As point estimates of individual ability, test scores turn
the logic of latent measurement models that we showed
in Eq. 1 upside down by predicting the latent ability

from the observed items, rather than vice versa: θ̂i ¼ θi
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þεi (e.g., McDonald, 2011). The fundamental problem
that all types of test scores share is that the resulting
point estimates contain measurement error, no matter
how complex the model from which they were
computed.
It is easiest to see this problem from the equations of

the sum score (Eqs. 3 and 4). As per Eq. 1, the latent
measurement model decomposes the answer to each
item Yik into the (unobserved) true θi and a measure-
ment error εik in latent measurement models. By stark
contrast, in the sum score equation, the items jointly de-
termine the overall skill score. Measurement error in the
items is not separated out from true ability but trans-
ferred to the sum score. Thus, building on CTT’s logic,
we can rewrite Eq. 4 as:

Weighted Sum Scorei ¼ λ1 � θi þ εi1ð Þ þ λ2
� θi þ εi2ð Þ þ λ3
� θi þ εi3ð Þ ð5Þ

Because all individual test items Yik confound true
ability and measurement error, the resulting sum score
also contains measurement error. Only under the un-
realistic assumption that no measurement error is
present in the items would the sum score equal the (un-
observed) ability θi.

7 Thus, sum scores are not infallible
indicators of θi. Weighting the indicators as in the
weighted sum score or principal component scores does
not remedy this issue (Raykov, Marcoulides, & Li, 2017).
Nor does using complex CTT or IRT models to com-
pute test scores: Although the ability estimation process
partly accounts for measurement error by considering
the factor loadings or item discriminations in the meas-
urement model, the resulting factor scores, WLEs, and
EAPs are merely realizations of the random variable θi
(Hardt, Hecht, Oud, & Voelkle, 2019; see also McDo-
nald, 2011) and hence fallible point estimates that con-
tain measurement error (Hoijtink & Boomsma, 1996). In
other words, whereas latent CTT or IRT measurement
models separate true ability from measurement error, all
forms of test scores again compound them.
Moreover, depending on the ability estimation method

used, test scores can contain additional biases. For ex-
ample, because EAP is a “shrinkage estimator,” EAP
scores underestimate the population variance of the skill
(Lu, Thomas, & Zumbo, 2005; Wu, 2005). The farther
away an individual’s score from the posterior mean (i.e.,
the mean after incorporating the prior distribution,
which often contains information from background vari-
ables), the more it gets pulled towards the poster-
ior mean. Contrariwise, WLE scores tend to have
slightly lower conditional bias (i.e., the bias in the

expected mean given θ) but higher standard deviation
than EAP (Lu et al., 2005). Also, for both EAP and WLE,
there are expected differences between individuals’ abil-
ity estimates and their true ability scores, and these dif-
ferences remain even in the case of large samples (Lu &
Thomas, 2008).
As a consequence of the measurement error (and po-

tentially other biases) contained in test scores,
covariance-based statistics (e.g., correlations or regres-
sion coefficients) involving test scores can be biased.
When the test scores are used to predict an outcome,
the bias is often (but not invariably) attenuation or “re-
gression dilution,” such that the true size of associations
between the skill and its predictors or outcomes are
underestimated (Lord & Novick, 2008). Both EAP and
WLE scores lead to deflated regression coefficients espe-
cially as the test length decreases (Braun & von Davier,
2017; Lu et al., 2005). The standard errors of regression
coefficients are also biased since the variance estimate of
the skills is biased.
Of note, different from variances and standard devia-

tions, estimates of the skill’s mean or mean differences
across groups remain unbiased when using CTT factor
scores. This is because CTT assumes that random meas-
urement error has a mean of zero, which implies that
the error is canceled out as one aggregates across a large
number of items and individuals (Lord & Novick, 2008).
Likewise, IRT ability estimates (EAP and WLE) both
provide unbiased estimates of population means (Wu,
2005).
Thus, using test scores in secondary analyses can lead

to biased estimates of population variances, regression
coefficients when the skill is predictor (independent vari-
able), standard errors—and hence potentially lead to er-
roneous conclusions in secondary analysis. It appears
that the crucial difference between the latent CTT/IRT

measurement models and the point estimates θ̂i com-
puted from these models is not always clear to second-
ary analysts. The assumption that test scores derived
from latent measurement models are somehow purified
from measurement error is erroneous. Whether using
factor scores, WLEs, or EAPs, no model-based ability es-

timates can remove the measurement error from θ̂i

—and different methods can introduce different forms

of additional bias.

Usability
Test scores are easy to understand conceptually, easy to
compute, and easy to incorporate in secondary analysis.
They can be treated much like any other variable (e.g.,
gender). Thus, the usability of test scores in the most
common scenario—that is, secondary analysts working

7Iff the test items conform to a 1PL (Rasch) IRT model, then the sum
score (at least) is a sufficient statistic for the latent ability θi.
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with pre-computed test scores provided by the data-
producing organization—is generally high.
Computing test scores is also straightforward in the

case of sum scores (although, as noted, this no longer
applies to complex test designs in modern LSAS that
contain missing data by design). Computing factor
scores and IRT ability estimates such as WLEs, and
EAPs is somewhat more involved. However, provided
basic familiarity with CTT or IRT, estimating measure-
ment models and computing ability estimates from them
is accessible through modern statistical software.

Immutability
In the scenario in which secondary analysts re-use test
scores provided by data-producing organizations, test
scores fulfill the immutability criterion: Test scores do
not change depending on the covariates or subsamples
used in the substantive analyses. They also do not de-
pend on the analyst or analysis setup.
Conversely, when secondary analysts compute their

own set of test scores from the original item-level data,
these test scores are no longer immutable. This is be-
cause CTT factor scores and IRT ability estimates de-
pend on the underlying measurement model, estimator,
and the subset of respondents included in the estimation
(Grice & Harris, 1998; Wainer & Thissen, 1987), and
also on the population model if a population model is
used (see Mislevy, 1991). Thus, substantive conclusions
regarding the same research question using the same
LSAS might differ between an analyst using test scores
computed by the data-producing organization and an-
other analyst using their own custom set of test scores.

Structural equation modeling
Definition and description
Provided access to the item-level data (i.e., variables that
store individuals’ answers to the single test items), struc-
tural equation modeling (SEM; Jöreskog, 1970; Jöreskog
& Sörbom, 1979) offers a solution for measurement
error in skill measures. Instead of computing fallible
point estimates of ability from a measurement model,
SEM combines the measurement model with a struc-
tural model. The measurement model (i.e., the relations
of θi to the Yik in Fig. 1) represents the skill in question
as a latent variable that is free from measurement error.
The structural model relates this error-free latent vari-
able to predictors, outcomes, or covariates through re-
gression or correlation paths (e.g., the paths from the Xik

to θi in Fig. 1).
Thanks to dramatic advances over the last two de-

cades, SEM has become an increasingly flexible and gen-
eral approach (e.g., Bollen & Noble, 2011; Li, 2016).
Routines for estimating SEM in modern statistical soft-
ware can handle both continuous and categorical

observed and latent variables, missing data, complex
sampling designs, multiple groups, mediation and mod-
eration, and many more scenarios relevant to LSAS. The
measurement model part can either be based on a CTT
or an IRT framework.8 CTT and IRT measurement
models are closely related (Glöckner-Rist & Hoijtink,
2003; Raykov & Marcoulides, 2016); both are usually es-
timated with maximum likelihood estimation (ML) or
robust ML (MLR). Item factor analysis (IFA) using a
weighted least squares estimator such as DWLS or
WLSMV (designed to handle binary or ordered-
categorical test items) can be seen as intermediate ap-
proach that bridges CTT and IRT (Glöckner-Rist &
Hoijtink, 2003; Wirth & Edwards, 2007). For rating
scales with five or more response options and data that
are approximately normally distributed, different estima-
tors lead to highly similar results (Rhemtulla, Brosseau-
Liard, & Savalei, 2012).
Hybrid approaches combine IRT with SEM (e.g., Lu

et al., 2005). For instance, the mixed effects structural
equations model (MESE; Junker, Schofield, & Taylor,
2012; see also Richardson & Gilks, 1993), extends the
covariance-based general SEM framework for psycho-
metric data (Bollen, 1989; Skrondal & Rabe-Hesketh,
2004). Here, the latent variable is defined via an IRT
measurement model before the structural paths are
added (Schofield, 2015). By using Bayesian priors, the
MESE model allows users to condition the latent vari-
able on covariates in the structural model to reflect ex-
traneous influences on the latent ability.

Fallibility
Separating true ability from measurement error is the
key motivation behind SEM and constitutes its main ad-

vantage over using point estimates of ability θ̂i such as
sum scores in subsequent analyses. By simultaneously
modeling the latent measurement model and the struc-
tural model, measurement error in the skill is separated
from true ability (Jöreskog, 1969). Because SEM relates
only the reliable portion of variance in the skill to other
variables, relationships between the skill and predictors,
outcomes, or correlates are unattenuated because they
are purged from measurement error in the skill (al-
though measurement error in the covariates, if un-
accounted for, may still lead to attenuation bias).
Thus, SEM results in unbiased relationships between

(latent) skills and other variables, avoiding biased results
that would arise from using sum scores or model-based
estimates (e.g., Fuller, 1987, 1995; Grice, 2001). SEM also
largely avoids the additional biases on the population

8Note that latent variables may be categorical too, thereby suitable to
model population heterogeneity and latent classes (e.g., Raykov,
Marcoulides, & Chang, 2016).
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variances and standard errors that using WLE or EAP
test scores can entail. For the advantages of SEM to
transpire, it is important that the measurement model
be correctly specified (Mislevy, 1991; Rhemtulla, van
Bork, & Borsboom, 2020), although it appears that re-
gression coefficient estimates of the skills in the struc-
tural part are relatively robust to mis-specification of the
measurement models or the conditioning population
model of the underlying skill (Schofield, 2015). However,
there is a risk that misspecification in the structural part
of the model can affect the measurement model; just like
adding or deleting covariates can influence the parame-
ters of the measurement model—an issue that we turn
to in the immutability section.

Usability
The disadvantage of SEMs compared to other methods
of using skill measures from LSAS is their lower usabil-
ity. Contrary to the other three methods reviewed here,
secondary analysts must themselves implement SEM.
This requires access to the item-level data (i.e., re-
sponses to individual test items must be included in the
data). Each SEM is a unique analysis model tailored to a
specific research question and cannot be disseminated
with the LSAS data. Implementing SEM requires special-
ized statistical software and expertise that is not a rou-
tine part of the curriculum in all social and behavioral
science disciplines. When IRT models (especially multi-
dimensional IRT models) are used in the measurement
part, only few software options are available and estima-
tion can be computationally intensive (IFA with a DWLS
or WLSMV estimator may provide a convenient solution
here; Wirth & Edwards, 2007). Moreover, complex test
designs (e.g., booklets or computer adaptive testing) may
further complicate matters. For example, booklet designs
or CAT can make it harder to specify and estimate a
SEM due to the substantial amount of missing data. For
these reasons, we expect that there will be only few oc-
casions in which applied researchers employ SEM in sec-
ondary analysis of data from LSAS, despite the versatility
of SEM and despite its advantages over test scores in
terms of fallibility.

Immutability
Although the flexibility of SEM is an asset, it comes at
the cost of violating immutability. If each analyst imple-
ments “their own” SEM, the parameters in the measure-
ment model (such as the loadings λk relating the latent
skill to its indicators; see Fig. 1) can change depending
on a range of factors. These factors include not only the
variables included in the measurement model but also
those in the structural model (Anderson & Gerbing,
1988). Likewise, the (sub-)sample, missing data handling
technique, and estimator used can result in different

measurement model parameters and consequently dif-
ferent structural paths. If the measurement model pa-
rameters (say, factor loadings) change solely due to the
presence (or absence) of predictors or outcomes in the
structural model, the meaning of the latent variables
changes and interpretational confounding occurs (Burt,
1973).9

A potential remedy for the mutability of measurement
model parameters is using a two-step procedure in
which the parameters of the measurement model are
fixed after first estimating them in the absence of struc-
tural paths. The fixed parameters of the measurement
model ensure that the latent variable is defined in a con-
stant manner when structural paths are added in the
second step (Anderson & Gerbing, 1988, 1992; see also,
Bakk & Vermunt, 2016). In the context of IRT, this pro-
cedure is known as a “fixed IRT-SEM approach” (Lu
et al., 2005, p. 271). Such a two-step procedure ensures
that the latent measurement model is immutable across
different researchers and specific research questions with
specific sets of variables and paths.10

Plausible values
Definition and description
Originally developed in the context of NAEP (Mislevy,
1991), PV methodology is tailored to the needs of LSAS.
Its aim is to provide unbiased estimates of population
statistics such as means and variances of skills. Access-
ible introductions include , Bauer and von Davier, 2017,
Lüdtke and Robitzsch (2017); in German), von Davier
et al. (2009), and Wu (2005).
The basic idea of PVs is to treat ability estimation as a

missing data problem and apply multiple imputation
methodology (Little & Rubin, 2002; Rubin, 1987; for
general introductions to multiple imputation, see Enders,
2010; Schafer & Graham, 2002; van Buuren, 2018). In-

stead of estimating a single test score θ̂i per respondent,
multiple imputations of their unobserved true ability
θi are generated. These imputations are called PVs

10We caution the reader about the lost variability of measurement
model parameters once they are fixed. The uncertainty entailed in the
measurement model is neglected when estimating structural paths.
While this variability can be exploited to achieve higher parameter
precision at large sample sizes, fixed IRT-SEM estimation still yields
smaller finite sample bias than simultaneous IRT-SEM at smaller sam-
ple sizes (Lu et al., 2005).

10We caution the reader about the lost variability of measurement
model parameters once they are fixed. The uncertainty entailed in the
measurement model is neglected when estimating structural paths.
While this variability can be exploited to achieve higher parameter
precision at large sample sizes, fixed IRT-SEM estimation still yields
smaller finite sample bias than simultaneous IRT-SEM at smaller sam-
ple sizes (Lu et al., 2005).
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because they are educated guesses, based on a statistical
model, of what a respondent’s true ability might reason-
ably be. PVs are a special case of multiple imputations as
the latent ability is completely missing. The observed in-
formation needed to impute the latent variables are their
indicators (i.e., the test items Yk in Fig. 1), the parame-
ters of the measurement model λk linking these indica-
tors to θ, and a population model containing a set of
background characteristics such as gender, parental
socio-economic status, or motivation variables (i.e., the
Xk, also called “conditioning variables”). The latent
measurement model from which PVs are computed can
be any type of IRT or CTT model. Typically, five PVs
per respondent are estimated and disseminated with the
data, although more (e.g., 10–20) PVs may be preferable
to obtain more precise estimates of standard errors (e.g.,
Laukaityte & Wiberg, 2017). The variation across PVs
reflects the uncertainty about the respondent’s true
ability.
It is important to realize what PVs are not: They are

not “test scores” in the traditional sense of Lord (1980);
they are not point estimates of an individual’s skills like
CTT factor scores or IRT ability estimates. Also, PVs
should not be confused with the true latent ability as
conceived in CTT and IRT. Instead, PVs are intermedi-
ate quantities needed for the unbiased estimation of
population quantities such as variances or regression co-
efficients (Bauer & von Davier, 2017).
More technically, PVs are repeated random draws

from a posterior distribution that represents an individ-
ual’s ability and the uncertainty about its true value. The
posterior distribution p(θi, Xi, Yi) is “conditional” because
it depends on the individual’s responses to test items
plus a (large) number of background variables contained
in the latent regression model (Fig. 1). In formulaic no-
tation, the posterior distribution from which PVs are
drawn is

p θi;Xi;Y ið Þ∝p Y ijθið Þ � p θij Xið Þ ð6Þ
Here, p(Yi| θi) is the item response model that de-

scribes how the latent ability θi depends on the vector of
item responses Yi = (Yi1, .., Yik) of person i. Moreover,
p(θi| Xi) is the population model that describes how the
latent skill θi depends on a vector of background vari-
ables Xi = (Xi1, .., Xip):

p θij Xið Þ∼N β0 þ Xi βp; σ
2
θjXi

� �
ð7Þ

The ability to incorporate background variables is a
major advantage of PV methodology over traditional
scoring methods such as sum scores or WLEs. Back-
ground variables often carry a great deal of information
about an individual’s likely standing on the skill scale,
adding precision in estimating the PVs. Using this

information for generating PVs allows LSAS to employ
complex test designs (such as the booklet or “planned
missingness” designs described earlier) that comprise far
fewer test items than traditional designs (von Davier
et al., 2009).
It may be instructive to note that there is a straightfor-

ward relationship between EAP test scores and PVs: As
both are computed/drawn from the same posterior dis-
tribution, the EAP is the expected value across all PVs.
This relationship makes it very evident that PVs ad-
equately account for the uncertainty about the respon-
dent’s true ability whereas the EAP—as a single point
estimate—does not.
From a practical perspective, incorporating PVs in sec-

ondary analysis involves the typical procedures for ana-
lyzing multiply imputed data: Each analysis (e.g., a
regression model) is run once for each of the PVs. Par-
ameter estimates are then pooled using “Rubin’s rules”
for means, regression coefficients, standard errors, and
other quantities (Rubin, 1987). Of particular importance
are the rules for pooling standard errors, which add un-
certainty about the true ability. The uncertainty about
the true ability is reflected in the variation across the dif-
ferent PVs per respondent and transferred to the vari-
ances and standard errors of parameter estimates.
Therefore, the rules are necessary to obtain correct
standard errors and p-values.

Fallibility
If used correctly—more on that later—PVs produce at
least approximately unbiased estimates of population pa-
rameters such as means, variances, regression coeffi-
cients, and standard errors. Although it may not be
immediately apparent, associations of the target ability
with external variables such as predictors or outcomes
of skills are corrected for random measurement error in
the ability. Other biases incurred by computing test
scores are also avoided. Estimates of population quan-
tities based on PVs are (often much) closer to the true
population value than those obtained with test scores
(e.g., Braun & von Davier, 2017; Carstens & Hastedt,
2010; Laukaityte & Wiberg, 2017; von Davier et al.,
2009; Wu, 2005).
As with SEM, the advantages of PVs only fully apply if

the measurement model and population model used for
generating the PV are correctly specified. Another pre-
condition for unbiasedness that is not always met in
LSAS is that if the data have a multilevel structure (e.g.,
students nested in schools), the PV-generating model
must adequately reflect this structure (Laukaityte &
Wiberg, 2017). Moreover, the PV-generating model
must be at least as general as the analysis model. This
precondition is known as the “congeniality” of the im-
putation model and analysis model (Enders, 2010; van
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Buuren, 2018). Lest bias occur, the background model
used for generating the PVs must include all variables
(in transformed or untransformed form) that an analysis
carried out by a secondary analyst includes (Bauer & von
Davier, 2017). This pertains also to interactions between
variables or higher-order (e.g., quadradic) terms. In prac-
tice, the conditioning model generating the PVs in LSAS
typically includes a very large number of variables (in-
deed, all available) from the background questionnaire.11

In this manner, it is possible to ensure that most con-
ceivable analysis models will be (at least almost) congen-
ial with the PV-generating model and to keep possible
bias that stems from the omission of variables in the
conditioning model to a minimum (von Davier et al.,
2009). Thus, if PVs were generated based on a compre-
hensive conditioning model, secondary analysts need not
be overly concerned with congeniality. Even with a com-
prehensive conditioning model, congeniality may be vio-
lated, however, if researchers introduce variables in the
analysis model that were not part of the conditioning
model or not even assessed in the background question-
naire. The latter can occur, for example, when secondary
analysts match the data from LSAS with administrative
records or geo-referenced data (e.g., regional unemploy-
ment rates).

Usability
It is possible for secondary data users to produce their
own set of PVs, provided that they have access to the in-
dividual test items and possess the necessary analytical
skills. Statistical software such as Mplus (Asparouhov &
Muthén, 2010) or the R package TAM (Robitzsch, Kie-
fer, & Wu, 2020) have made PV estimation more access-
ible recently. Some LSAS such as the German NEPS
(Scharl, Carstensen, & Gnambs, 2020) now provide dedi-
cated tools for generating PVs based on a pre-specified
measurement model and a custom population model in
which secondary analysts can include the analysis vari-
ables required to achieve congeniality.
In most cases, PVs are provided by data-producing or-

ganizations. Although the lion’s share of work is thus on
the side of these organizations, it is fair to say that PV
methodology does complicate matters for secondary an-
alysts somewhat: Using PVs requires at least a basic un-
derstanding of multiple imputation methodology.
Secondary analysts must run each analysis separately for
each set of PVs and pool results using Rubin’s rules.
It is important that secondary data analysts use PVs

correctly, lest they lose the advantages of PV

methodology for correct statistical inference. Two incor-
rect usages of PVs continue to be widespread (Jerrim
et al., 2017; Laukaityte & Wiberg, 2017; Marchant, 2015;
von Davier et al., 2009). The first incorrect usage is to
use only one PV as if it were a point estimate, that is, a
test score. Although this is the lesser sin and can pro-
duce unbiased estimates of population quantities (Wu,
2005), the uncertainty about each person’s skill is lost
and the variability information contained in the other
PVs is neglected. The second mistake is to simply aver-
age across all PVs and use this average in subsequent
analyses. Although the average across PVs produces a
correct estimate of the ability’s population mean, vari-
ances and standard errors will be biased downward as
the uncertainty about the person’s true ability is lost. Ig-
noring the uncertainty about the person’s true ability
may (but need not always; Marchant, 2015) lead to faulty
inferences.
Fortunately, modern statistical software and modules

make working with PVs less burdensome for secondary
analysts. As working with PVs is the same as working
with multiple imputations, programs such as Mplus,
Stata, SPSS, or R all contain functions or packages that
automate the process of working with PVs. For example,
the Stata module REPEST (Avvisati & Keslair, 2020) fa-
cilitates analyses using PVs (and survey weights) from
the PISA and PIAAC studies carried out by the OECD.
Thus, using PVs has become straightforward at least for
most standard analyses (e.g., multiple regression), and
there is little reason to shy away from using PVs as a
secondary analyst for usability reasons.

Immutability
As noted earlier, typically the data-producing
organization generates a set of PVs intended to serve as
broad a range of research questions as possible. In that
case, immutability is assured because all secondary ana-
lysts will use the exact same set of PVs for their
analyses.
If, by contrast, secondary analysts estimate their own

PV (e.g., because they want to include additional condi-
tioning variables to ensure congeniality), these PVs will
differ depending on the specific type of measurement
model chosen, the set of background variables included
in the conditioning model, the subsample, and the im-
putation approach.12 As a consequence, substantive re-
sults (e.g., relationship between the skill and some
outcomes) obtained with different sets of PVs may also
differ. Although user-generated PVs may help in

12To be precise, the specific PVs per respondent can change by chance
alone even when re-running the exact same PV-generating model. This
is because, as outlined earlier, PVs are random draws from the poster-
ior distribution. This, however, will typically not affect pooled esti-
mates from these two sets of PVs.

12To be precise, the specific PVs per respondent can change by chance
alone even when re-running the exact same PV-generating model. This
is because, as outlined earlier, PVs are random draws from the poster-
ior distribution. This, however, will typically not affect pooled esti-
mates from these two sets of PVs.
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achieving congeniality between the PV-generating model
and analysis model, they thus violate our immutability
criterion. To prevent large discrepancies across analysts
and analyses, LSAS could define a set of standard condi-
tioning variables that secondary analysts should include
in their PV-generating model.

Discussion
Secondary analysts working with data from LSAS often
use test scores in much the same way as they use other
analysis variables (e.g., gender, educational attainment).
However, as our review highlighted, there are several
problems with test scores that are not yet widely recog-
nized by secondary analysts (Braun & von Davier, 2017;
Jacob & Rothstein, 2016; Jerrim et al., 2017; von Davier
et al., 2009): As point estimates of ability, test scores are
not fully adequate for the task of statistical inference in
LSAS. Test scores do not control for measurement error
in the skill, leading to various biases in regression coeffi-
cients, standard errors, and other population statistics.
Some types of test scores are also unable to handle mod-
ern LSAS’s complex test designs and to incorporate in-
formation from background variables.
At this point, the reader may wonder how large and

relevant the bias incurred by using test scores actually is.
Simulation studies are best suited to answer this ques-
tion. In simulation studies, data are simulated such
that—unlike in real data—the true ability per simulated
respondent is known, which allows quantifying various
forms of bias. In one such study, Braun and von Davier
(2017) studied the extent of attenuation bias that can
occur in regression models in which a skill is an inde-
pendent variable (i.e., predictor). The regression coeffi-
cient estimates based on five PVs were highly similar to
the true population value, that is, unbiased. On the other
hand, regression coefficients based on IRT ability esti-
mates—EAP, WLE, and the simple maximum likelihood
estimate (MLE)—were severely attenuated, with esti-
mates 20–46% lower than the true population value of
the regression coefficient (for details, see Table S1 in the
Supplementary Online Material [SOM]). Moreover,
EAP, WLE, and MLE (but less so PVs) produced overes-
timated regression coefficients for a covariate. These re-
sults were observed both in the case of congeniality and
even non-congeniality between the generating model of
PVs and the regression model used for substantive
analysis.
Another simulation study by Wu (2005) showed that

the population mean was correctly estimated not only
by PVs but also by IRT ability estimates (WLE, EAP, and
MLE) (see Table S2 in SOM). However, only PVs pro-
vided nearly correct estimates of population variance,
whereas IRT ability estimates were biased for both 20-
item and even more so for three-item tests. Similarly,

von Davier et al. (2009) showed that the population
means were predicted fairly accurately regardless of the
number of items on the test and the scoring method
used—EAP, EAP adjusted for group membership (EAP-
MG), Warm’s correction for MLE (WML), and five PVs
(Table S3 in SOM). However, this was not the case for
estimated population standard deviations, which only
PVs were able to recover accurately. All other methods
were biased, and, akin to the Wu (2005) study, bias in-
creased as the number of items tested decreased.
In sum, these simulation studies highlight that popula-

tion means of skills are unbiased when using test scores.
However, the skills’ variances, standard errors, and re-
gression coefficients when using the skill as an inde-
pendent variable will all be biased when using test
scores, which may lead to erroneous statistical inferences
(Braun & von Davier, 2017; Lu et al., 2005; Schofield,
2015; Wu, 2005). PVs perform well in all scenarios.

Practical recommendations
Based on our review, our recommendations for second-
ary analysts are clear: Whenever possible, secondary ana-
lysts should avoid using test scores in favor of methods
that adequately account for measurement error in the
target skill and preserve the uncertainty about the skill’s
true value per individual. In this regard, PV methodology
lends itself as currently the best choice that is tailored to
the needs of LSAS. If used correctly, PVs can prevent
the various forms of bias in variances, regression coeffi-
cients, and their standard errors, as well as other popula-
tion statistics that using test scores can entail. Moreover,
using PVs can help avoid overly optimistic conclusions
(i.e., type I error) in questions involving incremental pre-
dictive validity of some variable over a skill or vice versa
(e.g., Braun & von Davier, 2017; see also Westfall & Yar-
koni, 2016). The best option for secondary analysts in
terms of fallibility, immutability, and usability is to use
PVs provided by the data-producing organization and
included in the data dissemination. If these PVs are
based on an extensive background model, congeniality is
typically a minor concern. If PVs are provided, re-
searchers should follow the correct methodology (i.e.,
run the analyses on each PV and pool results following
Rubin’s rules) and refrain from averaging PVs or using
only one PV.
In the increasingly rare cases in which only test scores

(e.g., WLE or EAP scores) but no PVs are included in
the data, secondary analysts should be wary of—and dis-
cuss transparently—the potential biases that can ensue
from using test scores. Alternatively, provided that item-
level information is available, researchers with advanced
psychometric knowledge might decide to use SEM or es-
timate a set of PVs by themselves—a process that, for
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example, NEPS now enables with a tool for PV gener-
ation (Scharl et al., 2020).
This leads us to our recommendations for data-

producing organizations responsible for LSAS. In our
view, data-producing organizations should provide a set
of PVs for each skill measured in a LSAS, based on an
extensive background model. The measurement model
and population (background) model on which these PVs
and/or test scores are based should be made transparent,
and computer code should be provided such that sec-
ondary analysts can reproduce these PVs as well as mod-
ify the model as needed. For this purpose, the data
should include item-level information (i.e., variables that
capture responses to individual test items) needed for
re-estimating the models on which PVs and/or test
scores were based. Following these recommendations
will widen the range of options available to secondary
analysts, enabling them, for example, to estimate their
own PVs and/or SEM, as opposed to having to rely on
test scores or PVs from a potentially non-congenial
background model. It will also contribute to greater re-
search transparency (see also Jerrim et al., 2017).

Conclusion
There are good reasons for secondary analysts to
gradually move away from using test scores—or at
least to be mindful of the shortcomings of deceptively
simple test scores in the context of LSAS, where the
interest is in population quantities. As our review has
shown, secondary analysts have two main options to
avoid the potential biases that result from using test
scores: (1) directly modeling measurement error in a
SEM framework; or (2) incorporating measurement
error in the analysis model through PV methodology.
When using SEM, the modelled skills should invoke
measurement models defined by the responsible data-
producing organization (and accompanied by some
recommended model parameters to foster immutabil-
ity). Using PVs that are already included in the data
(and that are ideally based on an extensive back-
ground model that ensures congeniality) seems to us
the most sensible option under the criteria of fallibil-
ity, usability, and immutability.
In line with previous authors (e.g., Braun & von

Davier, 2017; Lüdtke & Robitzsch, 2017; von Davier
et al., 2009; Wu, 2005), we therefore recommend that
secondary analysts—as well as organizations responsible
for LSAS—fully embrace PV methodology. Although
some time and effort are necessary to understand the
basics of PVs, we believe the effort is worthwhile, as
these methods will enable analysts to produce more
rigorous and reliable research findings from LSAS to in-
form policy and practice. We hope that our primer pro-
vided a good starting point.
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